
Predicting MLB Pitch Outcomes From Video Data

Ohm Patel
Stanford University

Department of Computer Science
ohmpatel@stanford.edu

Ishan Mehta
Stanford University

Department of Computer Science
ishanm@stanford.edu

Abstract

Accurately classifying pitch types in baseball is impor-
tant for analytics, scouting, statistics, and more. In this
paper, we aim to use a computer vision-based approach to
automatically classify MLB pitch types—including fastball,
cutter, slider, changeup, curveball, and sinker—from broad-
cast video footage. Our method focuses on modeling the
ball trajectory from the pitcher’s release to the plate, using
the specific ball path to train our model.

To capture these motion patterns, we employ 3D Convo-
lutional Neural Networks (3D CNN), which process the data
using convolution and pooling over the course of the net-
work. This helps with identifying metrics such as horizontal
and vertical break, pitch speed, and spin rate. Addition-
ally, we add in late fusion as a way to extract both spatial
and temporal features. They each independently process the
input and eventually combine these using a multilayer per-
ceptron (MLP).

1. Motivation

In 2017, Major League Baseball (MLB) witnessed an un-
precedented event during the Houston Astros’ postseason.
They beat some of the best teams in the league, including
the the New York Yankees and Los Angeles Dodgers. How-
ever, investigations revealed that the Astros used an illegal
sign-stealing scheme (10), where players were banging on
a trash can to communicate upcoming pitch types to bat-
ters. The signals were determined based on stolen signs,
often relayed by baserunners, with one bang typically in-
dicating a curveball, two bangs signaling other off-speed
pitches, and no bang denoting a fastball.This incident high-
lighted a compelling insight: knowledge of pitch type can
lead to a significant competitive advantage, even a World
Series title. Motivated by this, we propose a data-driven,
vision-based approach to emulate this advantage.

2. Introduction

The early attempts at MLB pitch tracking began in the
2006 MLB Postseason with the creation of two neural net-
works, one for left-handed pitchers and one for right-handed
pitchers. As these neural networks progressed, they tended
to employ more structured tracking data such as velocity,
spin rate, release point, and movement. These approaches
have definitely been effecitve, but they require large contex-
tual systems and significant calibration as well as the knowl-
edge about a pitcher’s arsenal.

To improve upon these methods, we want to classify
pitch types using 3D Convolutional Neural networks to cap-
ture the specific flight path of the ball from release point
to home plate. The goal is not to be pitcher specific, but
rather learn simply from the movement of the pitch alone.
By tracking across frames, we eliminate the need for pro-
prietary data. We also aim to add late fusion techniques and
augment the dataset via frame interpolation and frame jitter-
ing. Our goal is to take this complicated and context-heavy
task and make it as efficient as possible. The input to both
of these networks are 5-7 second-long video clips of single
pitches.

3. Literature Review

The paper on Neural Network-Based Trajectories (4)
converts ball tracking from 2D space into 3D space. While
we are aiming to track in 3D space from the beginning,
this paper does employ a mean squared error function with
Adam optimization to train the model on ball trajectories.
It also, similar to our goal, doesn’t use any proprietary
information such as pitcher’s arsenals. They build their
architecture using seven fully connected (FC) layers with
various hidden sizes. While the results are not displayed
numerically, it can be seen in the paper that ball tracking is
being done accurately as there are approximately 15 visible
frames per pitch.

Another paper, titled PitcherNet (2), works to use pitcher
kinematics along with ball tracking to capture real-time ball

1

movement in a brodcast camera angle. This paper utilizes
a 128-neuron FC layer and a Temporoal Convolutional
Network (TCN) which is comprised of a 1D convolutional
layer with batch normalization and ReLU. They also add in
data augmentation with motional blurring. In terms of ball
tracking specifically, they use pitch position, handedness,
release point, pitch velocity, and release extension to
accurately track the ball.

The third paper is titled ”Computer Vision in Base-
ball: The Evolution of Statcast.” (6) While a majority of
this paper is talking about more general live tracking, there
is a portion about an ICP algorithm which focuses on the
generation and convergence of two point clouds. These are
used to focus the video or image to the ball specifically
which can be helpful as a first step in object tracking. Most
fascinatingly, they mathematically define rotation matrices
as a function of the correspondence between these point
clouds, represented as Pn. This mechanism gives us a
way to measure rotation without having to fully derive an
accurate metric for it ourselves.

Research on this subject can be broken up into the dis-
tinct problems that comprise the overaching goal of pitch
classification: object detection and trajectory mapping. For
both of these problems, SotA tools deployed by profes-
sional leagues, such as FIFA (soccer), PGA (golf), or ATP
(tennis), are built using research on 3D CNNs for its real-
time capability (8). In tennis, specifically, action recog-
nition and object tracking is done through the pairing of
3D CNN and LSTM networks to capture spatial features
and temporal relations. However, due to changes in angles,
camera quality, motion, and shadows in broadcast replay,
many sports organizations have struggled applying such
models to just one viewing angle, and thus deploy multi-
ple cameras on the field and train models on aggregations
of viewing angles for better accuracy.

The task of object detection has been significantly im-
proved with the innovation of YOLO - a real-time object
detection model capable of detecting and charting bounding
boxes of target objects. With open-vocabulary detection,
YOLO-World is enabled to zero-shot adaption for different
objects without retraining (3). Similar to this generalized
model, models like YOLOv8 are trained on specific objects,
i.e. ”sports ball”, which can be used to more concretely de-
tect an object.

Other approaches for object detection include TrackNet
(5), which uses a heatmap-based deep learning network to
track tennis balls in matches. Like baseball, due to the ball’s
small size, tennis has a similar problem of it being difficult
to detect in high-speed movement on broadcast. This ap-
proach generates a detection heatmap from a single frame
or consecutive frames which can derive the position and di-
rection of a ball.

For different domains, classifying human movements us-
ing modern deep neural networks has been very successful,
such as for UFC. Using an attention-based two-stream deep
neural network, these authors very able to train a model for
spatial feature learning as the first stream, and use features
from transfer-learning and attention modules for classifica-
tion as the second team (9). This model had over 99% accu-
racy on UFC50, representing the potential attention-based
architectures have on spatiotemporal classification tasks.
However, this domain is very different from baseball due to
the difference in size of the object being tracked and classi-
fied.

Many approaches in these tasks use creative architec-
tures to adapt video processing to sports objeect tracking.
Like many of the other papers, this paper (1) attempts to
solve tennis ball tracking. By creating a model with dual-
pathway architecture, they use a SlowFast network to track
the motion of a detected object, like a tennis ball, with re-
spect to time, using the fast network, while using a slow
network to focus on spatial features around the object in
motion. Using this type of temporal modeling, this model
achieved 74% accuracy on classifying tennis shots. This
an example of a TCN, similar to those aforementioned for
other classifiction tasks.

Extensions of ball tracking technologies are using this
data to create extrapolations of ball trajectory and model
these features using deep learning for even better classifi-
cation, without the need for tracking full ball movement.
Using deep learning to model baseball pitch flight with re-
lease metrics as the input, ending ball location was pre-
dicted with 33% more accuracy than linear regression-based
approaches (7). Thus, information on ball trajectory and
release early in a video can provide very insightful signal
for predicted the ending position, and therefore the likely
path to that position. As different pitches in baseball have
varying pitch releases, spin rates, and movement, compar-
ing that information can be very useful for classifying that
pitch.

Extending away from the computer vision domain but
relating to pitch classification, research has been done on
the kinematics of pitching. Different pitches call for differ-
ent arm angles, torso rotation, movement velocity, and such.
Thus, studying the specific details of a pitchers movement
can provide signals for the pitch that is being thrown. While
traditional approaches to pitch classification focus on track-
ing the movement of the baseball itself, additional features
can be derived from analyzing movement of the pitcher’s
body. While computer vision research on it is yet to be
done, The Delft Insititue of Applied Mathematics reached
71% accuracy on pitch classification using kinetic sensors
attached to a pitcher’s body (8).

4. Dataset
Our dataset is motivated by an open-source Github

Repository. The repository has JSON files with information
on pitches from 20 baseball games in the 2017 MLB Post-
season, totaling over 42 hours of total footage. The JSON
has a youtube video link of games posted by the official
MLB account, timestamp info, and pitch info.

4.1. Preprocessing

4.1.1 Downloading Data

We performed three major tasks on the data. Firstly, we
wrote scripts to use those JSON objects to download game
footage and segment into pitches. This script uses the yt-dlp
API and downloads full game footage from the live broad-
cast (roughly 3.5 hours) and then uses timestamps in the
JSON to extract the specified pitch’s video. This builds us
a dataset of 4290 pitches, classified by outcome and pitch
type. However, this requires further preprocessing, such
as choosing pitches where there’s no swing, as that affects
a model’s interpretability of pitch movement, and properly
cropping videos with excess broadcast footage (panovers of
crowd or player zooms).

4.1.2 Dataset Imbalance

In training our baseline and initial models, we noticed the
dataset was dominated by fastballs and sliders and the mod-
els began to guess those pitches every time. To counter this,
we wrote a script to extract the game links with the most
curveballs, changeups, knucklecurves, and sinkers thrown
and then set a threshold on the other pitches. This gave us a
dataset of 1,014 clips with a much better balance (see Figure
2).

4.1.3 Swing Distraction

Third, we ran a small model during experimentation and
noticed that pitches in which the batter swung led to lower
prediction accuracy than those in which the batter did not.
Intuitively, this makes sense because the bat is simply a dis-
traction across frames that may hinder the model’s ability
to accurately track the ball. For this reason, we removed all
clips in which the batter swung. After the dataset imbalance
step and this one, our dataset was now 572 clips.

4.1.4 Reviewing Output

Finally, we cross-checked the pitch type annotation with the
actual pitch for our sub-dataset. Since we both have played
and watched baseball for 15 years, this came fairly natu-
rally to us and we just wanted to perform a sanity check on
the manual annotations that were present. This is because
many pitches look fairly similar and we wanted to ensure

the output was exactly as we had in mind. This step may
have been a bit repetitive, but we thought it to be cautionary
and necessary to have successful results in the future.

Figure 1. Original pitch type distribution in the dataset

Figure 2. Updated pitch type distribution after grouping

5. Methods
5.1. Baseline

This is an elementary implementation of ball tracking
using computer vision and use ball path to determine pitch
type. It processes video files of baseball pitches, tracks the
ball’s trajectory using background subtraction and contour
detection, curvature, horizontal and vertical movement, and
then classifies each pitch into specific types (fastball, slider,
curveball, etc.) based on these features. To simplify classifi-
cation for ground truth, fastballs and sinkers are considered
”fastball” while for predictions, only pitches classified as
fastball are considered ”fastball.” We evaluated classifica-
tion accuracy for both training and validation sets.

5.2. 3D Convolutional Neural Network

To classify pitch types directly from MLB pitching clips,
we propose a deep learning approach based on 3D Convolu-
tional Neural Networks (3D CNNs). Unlike 2D CNNs that
process individual frames, 3D CNNs model both spatial and
temporal dimensions at the same time which allows them to
work well on video classifcation tasks.

Our input to the network are short video clips (5-7 sec-
onds) centered around the pitch release, sampled at 30 FPS.

https://github.com/piergiaj/mlb-youtube

Each input will thus be a tensor of shape (T, H, W, C) where
T is the number of frames (e.g., 32), H and W are height and
width, and C=3 is for RGB channels. This is beneficial in
a use case like pitch classification because accounting for
temporal dimension allows for a model to learn from move-
ment over time.

We preprocessed the clips by cutting extraneous frames,
normalizing pixel values, and applying data augmentations
like brightness jittering or slight rotation to improve gener-
alization. The final layer of the 3D CNN will be a softmax
classifier over the target pitch types: e.g., fastball, slider,
curveball, changeup, etc.

5.3. Late Fusion

For our late fusion approach, as described in class, we
process the spatial and temporal information separately be-
fore eventually combining them. This architecture allows
the model to extract features independently which could be
very helpful when the feature set is both diverse and com-
plex as ours is.

The late fusion pipeline consists of two parallel
branches:

• A spatial branch using 2D convolutions to extract
frame-level features

• A temporal branch using 1D convolutions to capture
the sequential nature of pitch trajectories

Each branch will process the input on its own, with the
spatial branch focusing on detecting the ball position and
the temporal branch identifying velocity changes, curva-
ture, and other time-dependent features.

More concretely, given input video V ∈ RT×H×W×C

where T is the number of frames, H and W are the height
and width, and C is the number of channels, we say:

Fspatial = f2D(V) ∈ RT×ds (1)

Ftemporal = f1D(V) ∈ Rdt (2)

where f2D and f1D are the spatial and temporal extractors
and ds and dt are their dimensions.

The fusion of these features occurs through concatena-
tion followed by a multilayer perceptron (MLP):

Ffused = MLP([Fspatial;Ftemporal]) ∈ Rdf (3)

6. 3D CNN Experiment
6.0.1 Input Representation and Preprocessing

Input video clips are represented as tensors V ∈
RB×3×T×H×W , where B is batch size, T = 16 tempo-
ral frames, and H = W = 112 spatial resolution. Each clip

undergoes temporal subsampling to extract uniformly dis-
tributed frames, followed by spatial resizing and ImageNet
normalization:

Vnorm =
V/255.0− µ

σ
(4)

where µ = [0.485, 0.456, 0.406] and σ =
[0.229, 0.224, 0.225].

6.0.2 Network Architecture

The 3D CNN processes input through spatiotemporal con-
volutions that capture motion patterns across both spatial
and temporal dimensions. A 3D convolution with kernel
K ∈ RCout×Cin×d×k×k operates as:

(F ∗K)i,j,t =

Cin−1∑
c=0

d−1∑
p=0

k−1∑
q=0

k−1∑
r=0

Fc,t+p,i+q,j+r ·Kc,p,q,r

(5)
The pretrained 3D ResNet-18 backbone extracts 512-

dimensional features: fvideo = ResNet3D(Vnorm). A
three-layer classification head maps features to pitch pre-
dictions through successive transformations:

h1 = ReLU(Dropout(W1fvideo + b1)) (6)
h2 = ReLU(Dropout(W2h1 + b2)) (7)
y = Softmax(W3h2 + b3) (8)

with dimensions W1 ∈ R256×512, W2 ∈ R128×256, and
W3 ∈ R3×128.

6.0.3 Training Configuration

To address class imbalance, we employ weighted cross-
entropy loss with inverse frequency weighting:

L = − 1

N

N∑
i=1

wyi
log(ŷi,yi

), wc =
N

Nc · C
(9)

where Nc is the number of samples in class c. The model is
optimized using Adam (α = 10−3, λ = 10−4) with gradi-
ent clipping (τ = 1.0) and ReduceLROnPlateau scheduling.
Early stopping terminates training after 5 epochs without
validation improvement.

This baseline represents standard video classification
methodology, enabling evaluation of explicit ball tracking
contributions in subsequent experiments.

7. Late Fusion Experiment
The model implements a late fusion approach combining

temporal video features with ball trajectory features:

y = ffusion(fvideo(Xvideo)⊕ fball(Xball)) (10)

where ⊕ denotes concatenation and y ∈ RC is the final
prediction for C = 3 classes.

7.1. Video Branch (Temporal Features)

• Backbone: ResNet3D-18 pretrained on Kinetics

• Input: Xvideo ∈ RB×3×T×H×W where:

– B = batch size

– T = 16 temporal frames

– H = W = 112 spatial resolution

• Feature extraction: fvideo = R3D-18(Xvideo) ∈
RB×512

• Preprocessing:

Xnorm =
X/255− µ

σ
(11)

where µ = [0.485, 0.456, 0.406]T and σ =
[0.229, 0.224, 0.225]T (ImageNet statistics)

7.2. Ball Tracking Branch (Physics Features)

• Input: Xball ∈ RB×12 trajectory features

• Architecture:

fball = ReLU(W2·Dropout(ReLU(W1Xball+b1))+b2)
(12)

where W1 ∈ R64×12, W2 ∈ R32×64

7.3. Trajectory Feature Engineering

The 12-dimensional trajectory feature vector Xball con-
sists of:

Xball = [µx, µy, σx, σy, rdet, µconf , µvx , µvy , σvx , σvy , κ,∆y]
T

(13)
where:

• µx, µy: mean normalized ball position

• σx, σy: position variance (trajectory spread)

• rdet =
Ndetected

Ntotal
: detection rate

• µconf : mean YOLO confidence

• µvx , µvy : mean velocity components

• σvx , σvy : velocity variance

• κ = 1
N−2

∑N−2
i=1

√
(∆2xi)2 + (∆2yi)2: trajectory

curvature

• ∆y = yN − y1: vertical displacement

7.4. Fusion Network

hfused = [fvideo; fball] ∈ RB×544 (14)

y = W3ReLU(W2ReLU(W1hfused + b1) + b2) + b3

(15)
where:

• W1 ∈ R256×544

• W2 ∈ R128×256

• W3 ∈ R3×128

7.5. Configurations

7.5.1 Loss Function

L = − 1

N

N∑
i=1

log p(yi|xi) + λ||θ||22 (16)

where λ = 10−4 (L2 regularization)

7.5.2 Optimization

• Optimizer: Adam with β1 = 0.9, β2 = 0.999

• Learning rate: α = 10−3

• Batch size: B = 4

• Epochs: E = 5

• Dropout rate: pdrop = 0.3

7.5.3 Data Preprocessing

• Frame sampling: Uniform sampling of T = 16
frames

• Spatial resolution: 112× 112 pixels

• Normalization: ImageNet statistics

• Train/validation split: 80%/20%

7.6. Pitch Classification Taxonomy

y ∈ {0 : fastball, 1 : breaking, 2 : offspeed} (17)

where:

• Fastball: {4-seam fastball, sinker}

• Breaking: {curveball, slider}

• Offspeed: {changeup, knuckleball}

7.7. Ball Detection Pipeline

• Detector: YOLOv8x pretrained on COCO

• Target class: Class 32 (sports ball)

• Confidence threshold: τ = 0.25

• IoU threshold: τIoU = 0.45

• Preprocessing: Crop to top 80% of frame height

7.8. Performance Metrics

• Accuracy: Acc = TP+TN
TP+TN+FP+FN

• Macro F1: F1macro = 1
C

∑C
c=1 F1c

• Precision: P = TP
TP+FP

• Recall: R = TP
TP+FN

8. Experiments

Table 1. 3D CNN Hyperparameters Summary
Parameter Symbol Value
Input frames T 16
Spatial resolution H ×W 112× 112
Batch size B 8
Learning rate α 10−3

Dropout rate pdrop 0.3
Training epochs E 10
Number of classes Nclasses 3

We trained this model with learning rates ranging from
10−1 to 10−5 and saw the best results with 10−3. Many on-
line sources say a dropout rate of 0.3 is standard with a 3D
CNN on our video size and so we kept that constant through
our trials. We decided on the three classes as motivated by
the Astros example and also because we felt as though we
didn’t have enough quality data to do a full 6-class output.
We varied the epochs from 3-15 and saw the best results
with 10 epochs on the above hyperparameters.

Table 2. Late Fusion Hyperparameters Summary
Parameter Symbol Value
Input frames T 16
Spatial resolution H ×W 112× 112
Batch size B 4
Learning rate α 10−3

Dropout rate pdrop 0.3
Training Epochs E 5
L2 regularization λ 10−4

Ball features dball 12
Video features dvideo 512
Fusion features dfusion 544

We decided on a batch size of 4 because 2 seemed to be
taking too long and 8 was beginning to lag as it could in-
clude videos from different teams and pitchers. The learn-
ing rate, same as in 3D CNN was decided after testing in
the 10−1 to 10−5 range. We kept the dropout rate at 0.3
for the same reason as above and reduced epochs from 10
to 5 because it felt as though we began overfitting after the
3rd, 4th, and 5th epoch (although it varied on each run). We
experimented without regularization, but saw severe over-
fitting and so we employed it. The ball features are listed
in Section 7, and were the minimum number of features we
deemed necessary to extract.

Table 3. 3D CNN Architecture
Component Layer Specification
Input Video clips (B, 3, 16, 112, 112)

Backbone 3D ResNet-18 Pretrained on Kinetics
Feature extraction → 512 features

Classifier

FC1 + Dropout 512 → 256
FC2 + Dropout 256 → 128

FC3 128 → 3
Activation ReLU (except output)

Output Softmax 3 pitch type probabilities

Table 4. Late Fusion Architecture
Component Layer/Parameter Specification

Video Branch
Backbone 3D ResNet-18 (pretrained)

Input (B, 3, T,H,W)
Output features dvideo = 512

Ball Branch

Input dimension dball = 15
Architecture 15 → 128 → 64 → 32
Activation ReLU + Dropout

Output features dball out = 32

Fusion Network

Input dimension 544 (512 + 32)
Architecture 544 → 512 → 256 → 128 → 3
Activation ReLU + Dropout

Output 3 class probabilities

Ball Features
Position (8D) Mean/Std/Min/Max X,Y

Temporal (2D) Detection rate, Confidence
Motion (5D) Speed, Curvature, Displacement

9. Results

Table 5. Model Performance Comparison
Metric Baseline 3D CNN 3D CNN Late Fusion Late Fusion

(No Ball) (With Ball) (No Ball) (With Ball)
Train Acc 25.4% 46.1% 78.66% 52.5% 54.2%
Val Acc 18.8% 45.6% 57.14% 50.3% 50.8%
F1 - 0.286 0.563 0.538 0.546
Precision - 0.544 0.532 0.525 0.531
Recall - 0.456 0.527 0.507 0.511

10. Analysis
10.1. Validation Accuracy

The first thing to note is the validation accuracies are still
quite low whether or not we added in ball tracking. This
may have to do with the difficulty of the task itself. The
MLB actually stores a separate neural network for every
pitcher, using only the output generated by that network for
pitch classification. Since we are trying to generalize one
method across all pitchers and pitch types, it is very diffi-
cult to be entirely accurate. Another quirk of MLB pitch
classification is there is no set standard of classification by
trajectory. Rather, the MLB labels pitches based on what

the specific pitcher would call it. Thus, considering two
pitches with similar trajectories but different speeds, like
cutter vs slider, arbitrary classification by the MLB makes
distinguishing between those pitches empirically difficult
due to overlap in the sets of pitch trajectories belonging to
the two different pitches.

10.2. Offspeed Woes

It seemed as though the models struggled to predict off-
speed with impressive certainty. One potential reason is the
similarity between offspeed and breaking pitches. For ex-
ample, changeups were featured in the offspeed category,
but they are similar speeds to sliders and can have similar
vertical drop to curveballs (both in the breaking category).
A second reason is simply lack of sufficient data. As can be
seen by the data distribution figures above, offspeed was the
lowest of the three classes in input images which can deter
the model from predicting that class, especially in limited
epochs.

11. Discussion

11.1. Ball Tracking

Coming into the project, we assumed ball tracking would
play a major part in detecting the pitch type. In our em-
ployement of a Yolo Model with a sports ball setting, we
noticed that it was struggling to pick up the ball at the be-
ginning of the frame because the ball was in the pitcher’s
glove, normally picking up other objects instead. For this
reason, we cropped the bottom 20% of the image and turned
it to grayscale in order to get a more accurate ball trajectory.
Over the course of the project, we employed many different
efforts at ball tracking and implemented them within our
baseline, 3D CNN and Late Fusion models. It seemed as
though using the YOLO model configured to ’sports ball’
was the most promising.

Figure 3. Ball Tracking Trajectory Features

11.2. Late Break

In class, we explored the effectiveness of late fusion
models for video classification tasks. While late fusion
has demonstrated strong performance it is hindered by
its reliance on some form of averaging across the tem-
poral dimension. The initial segments of each pitch
video—comprising the pitcher’s wind-up and the batter’s
stance are largely uniform and lack distinguishing features.
Even during the pitch’s trajectory, approximately the first
75% of the motion is visually similar across different pitch
types. It is only in the just before the ball reaches the batter,
that the pitch begins to break or move. This variation is cru-
cial for accurate pitch classification. However, by aggregat-
ing information uniformly over time, the late fusion model
may underrepresent this window, which hurts its ability to
accurately classify pitch types.

11.3. Pitch Distribution

Instead of classifying each pitch as its own class, we
split the output into three classes: fasatball, breaking, and
offspeed. This was meant a) to mimic the way the Astros
differentiated between pitches and b) a very natural catego-
rization of the pitches. The issue here is the classes are not
very well balanced with significantly more examples being
present for fastball and breaking. It would have been pos-
sible to change which pitches were in each category, but
that would lose the practical applications that this project is
rooted in.

11.4. The Third Epoch Phenomenon

It seemed as though both our 3D CNN and Late Fusion
models peaked in the third epoch and then began to overfit.
This can be seen in the heatmap as well as the line graphs
we have below. The assumption is the model was learning
from the clips until then, but after it was just memorizing
the locations of the ball. It began prioritizing the x and y
end locations of the pitch more and more which hints at
memorization since that is not necessarily a determinant of
pitch type.

Figure 4. Class performance heatmap across pitch types

Figure 5. Learning Curves for Late-Fusion without Ball Tracking,
showing 3rd epoch success

11.5. 3D CNN vs Late Fusion Performance

Incorporating identical ball-tracking features, the 3-D
CNN backbone still outperforms its late-fusion counterpart
by a clear margin (57.14% versus 50.80% validation accu-
racy). Because both pipelines receive the same cues, the
performance gap shows the benefit of joint spatiotemporal
filtering: the 3-D convolutions can couple the ball’s late-
stage kinematics (like glove-side run or vertical drop) with
visual context (arm slot, spin-induced blur). On the other
hand, the decision-level aggregation in late fusion averages
these cues across time and dilutes the signal that occurs in
the final 1̃50 ms before plate crossing.

12. Conclusion

Overall, this was a fascinating project as it allowed us
to learn more about one of our passions while applying the
concepts we learned in the course. We employed a simple
baseline which was trained only on video data, a 3D CNN
and Late Fusion model trained on the video data, and ver-
sions of the 3D CNN and Late Fusion which added in ball
tracking as a set of features. We saw the highest validation
accuracy with 3D CNN with ball tracking, and it seemed as
though there was an improvement in both models when we
employed ball tracking.

13. Future Work
One of the biggest blockers was simply training time and

dataset availability. While we did have a fairly large dataset,
after filtering to keep the classes balanced, and further filter-
ing for no swing pitches, it became quite small. It would be
ideal to have maybe another two thousand or so relevant ex-
amples so we could train larger and more complex models.
Additionally, with more compute, it would be interesting
to see if more epochs and more complicated architectures
would help our validation accuracy.
Outside of this, training our own ball tracking model and
maybe adding in a more complex ball tracking-related fea-
ture set could also help improve on our accuracy. This could
include features for spin rate and seam direction.

14. Contribution to Work
Ohm

• data downloading scripts from youtube

• object detection algorithms, testing YOLOv8 and gen-
erating features from ball trajectory for models

• training and testing 3D-CNN with ball-tracking

• training and testing Late-Fusion without ball-tracking

• equal work on report writing

Ishan

• data exploration on pitch JSONs and clustering into
valid pitches

• milestone used in baseline, raw ball tracking using cv2

• training and testing 3D-CNN without ball-tracking

• training and testing Late-Fusion with ball-tracking

• equal work on report writing

References
[1] Slowfast-tcn: A deep learning approach for visual speech

recognition. 8. 1
[2] J. Bright, B. Balaji, Y. Chen, D. A. Clausi, and J. S. Zelek.

Pitchernet: Powering the moneyball evolution in baseball
video analytics. 2024. 1

[3] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan.
Yolo-world: Real-time open-vocabulary object detection.
2024. 1

[4] J. Hsieh. Neural network-based tracking and 3d reconstruc-
tion of baseball pitch trajectories from single-view 2d video.
arXiv preprint arXiv:2405.16296, 2024. 1

[5] Y.-C. Huang, I.-N. Liao, C.-H. Chen, T.-U. İk, and W.-C.
Peng. Tracknet: A deep learning network for tracking high-
speed and tiny objects in sports applications. 2019. 1

[6] L. McElroy. Computer vision in baseball: The evolution of
statcast. pages 1–7, 2023. 1

[7] R. Moore, R. Gurchiek, and J. Avedesian. A context-
enhanced deep learning approach to predict baseball pitch
location from ball tracking release metrics. 11 2024. 1

[8] B. T. Naik, M. F. Hashmi, and N. D. Bokde. A comprehen-
sive review of computer vision in sports: Open issues, fu-
ture trends and research directions. Applied Sciences, 12(9),
2022. 1

[9] A. Ray, N. Aslam, and M. Kolekar. pages 1–21, 02 2024. 1
[10] Wikipedia contributors. Houston astros sign stealing scandal.

2024. [Online; accessed 4-June-2025]. 1

15. Appendix

Figure 6. Training progress for Late Fusion w/out Ball Tracking

Figure 7. Example of ball trajectory being mapped out frame by
frame on sample clip

